Green synthesis of CdS/flaxseed mucilage nanocomposite films using gamma irradiation for packaging applications

Author:

Sokary Rehab1ORCID,Raslan Heba A.2,Fathy Rasha Mohammad3

Affiliation:

1. Radiation Chemistry Department, National Centre for Radiation Research and Technology , Egyptian Atomic Energy Authority , Cairo , Egypt

2. Polymer Chemistry Department, National Centre for Radiation Research and Technology , Egyptian Atomic Energy Authority , Cairo , Egypt

3. Drug Radiation Research Department, National Centre for Radiation Research and Technology , Egyptian Atomic Energy Authority , Cairo , Egypt

Abstract

Abstract The most common ways to produce nanoparticles are through chemical and physical processes, which can be expensive and environmentally hazardous. Using plant extracts (green synthesis) as reducing and capping agents is a simple, cost-effective, and environmentally friendly method of lowering the usage of dangerous chemicals in the synthesis of metal nanoparticles. This study covers the environmentally friendly synthesis of cadmium sulphide nanoparticles (CdS NPs) using a blend of flaxseed extracts (FM), polyvinyl alcohol (PVA), and chitosan (Cs). The composites are then exposed to gamma irradiation at doses of 20 kGy and 40 kGy. UV–VIS absorption spectroscopy, SEM, HRTEM, EDX, and FTIR were used to analyse the produced nanocomposite films. UV–Vis absorption spectra showed considerable surface Plasmon resonance (SPR) bands at 396–440 nm, indicating that CdS NPs had been successfully synthesized. A progressive red shift in wavelength was noted, along with the broadening of the absorption band as the irradiation dose increased. Transmission electron microscopy pictures revealed that the generated CdS nanostructures were dispersed as spherical nanoparticles with remarkable structural homogeneity. Tensile strength and elongation measurements of the films revealed that the inclusion of CdS NPs improved their mechanical properties. The addition of CdS NPs to the current blends limits biodegradation in soil. Thermal gravimetric analysis findings showed that CdS NPs included in FM/PVA films had improved thermal stability. The antimicrobial activities of the tested films were performed against Staphylococcus aureus, Escherichia coli, and Candida albicans. The results revealed that all of the films exhibited more antibacterial activity against S. aureus than the two others, with the highest activity observed in nanocomposites with a high concentration of CdS.

Publisher

Walter de Gruyter GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3