Application of artificial neural networks for predicting the isotopic composition of high burn-up solid plutonium sample using the 90–105 keV gamma-spectrum region

Author:

Sarkar Arnab12ORCID

Affiliation:

1. Fuel Chemistry Division, Bhabha Atomic Research Center , Mumbai 400085 , India

2. Homi Bhabha National Institute , Anushaktinagar , Mumbai 400094 , India

Abstract

Abstract An artificial neural network (ANN) algorithm was developed to predict isotopic composition of five Pu isotopes (238Pu, 239Pu, 240Pu, 241Pu, and 242Pu) of high burn-up Pu samples. The study was carried out using the most complex but informative gamma energy region of Pu gamma spectra, 90–106 keV. This region has remained futile, due to the overlapping nature of the gamma emission lines and X-rays emitted by U, Pu, and Np. A backpropagation neural network algorithm based ANN with error minimization using the steepest gradient method was built with the help of normalized gamma spectra for ∼800 samples. The paper discusses the optimization of hidden neuron number and the layer design for best prediction. With the exception of 242Pu, the prediction accuracy and precision of the proposed technique was found to be ∼3% for all other isotopes of Pu.

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry

Reference42 articles.

1. Sarkar, A., Singh, M., Bhusan, K. S., Shah, R. V., Jagdishkumar, S., Paul, S., Jaison, P. G. How Long One Should Count Plutonium (Pu) Samples for Isotopic Analysis by Gamma Spectroscopy? BARC Reports. BARC/2020/E/003, 2020. https://inis.iaea.org/search/search.aspx?orig_q=RN:51095928.

2. Aggarwal, S. K., Duggal, R. K., Rao, R., Jain, H. C. Comparative study of Pu-239, Pu-240 and Pu-242 spikes for determining plutonium concentration by isotope dilution-thermal ionization mass spectrometry. Int. J. Mass Spectrom. Ion Process. 1986, 71, 221; https://doi.org/10.1016/0168-1176(86)80032-5.

3. Sasi Bhushan, K., Shah, R., Jagadish Kumar, S., Goswami, P., Paul, S., Sarkar, A., Rao, R., Jaison, P. G. Isotopic Composition Analysis in the Chemical Quality Control of Nuclear Materials. BARC Reports. BARC/2020/I/011, 2020.

4. Sarkar, A., Paul, S., Aggarwal, S. K., Tomar, B. S. Determination of Pu Isotopic Composition and 241Am by High Resolution Gamma Spectrometry on Solid Samples. BARC Reports. BARC/2011/E/018, 2011. https://inis.iaea.org/collection/NCLCollectionStore/_Public/42/107/42107468.pdf?r=1.

5. Paul, S., Sarkar, A., Alamelu, D., Shah, R. V., Aggarwal, S. K. Isotope dilution gamma spectrometry for Pu using low energy photons. Radiochim. Acta 2012, 100, 291; https://doi.org/10.1524/ract.2012.1919.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3