Adsorptive removal of PAR and Arsenazo-III from radioactive waste solutions by modified sugarcane bagasse as eco-friendly sorbent

Author:

Abdel-Galil Ezzat A.1,Eid Marwa A.1,Shahr El-Din Ahmed M.1

Affiliation:

1. Hot Laboratories and Waste Management Center, Egyptian Atomic Energy Authority , P.O. Box 13759 , Cairo , Egypt

Abstract

Abstract In this paper, sugarcane bagasse (SCB) was modified using phosphoric acid. The modified sugarcane bagasse (MSCB) has been used to remove 4-(2-pyridylazo)resorcinol (PAR) and Arsenazo-III (Ar-III) from liquid radioactive waste. The surface morphology and functional groups of the MSCB were studied using scanning electron microscopy (SEM), X-ray diffraction (XRD), fourier transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA). Adsorption ability of MSCB has been tested by batch mode through some relevant factors like initial pH, reaction time, initial coloring reagents (PAR and Ar-III) concentrations, and adsorbent weight. At adsorption equilibrium time 180 min and pH values of 3 and 1 for PAR and Ar-III; the maximum removal (%) for both PAR and Ar-III were 93 and 57%, respectively. The adsorption isotherm data are representative well to Freundlich isotherm model. The mean free energy of adsorption, E (kJ/mol), has been estimated as 5.75 and 2.28 kJ/mol for PAR and Ar-III, respectively, which suggests that the adsorption occurred physically. The maximum adsorption capacity of MSCB for PAR and Ar-III is 96.62 and 15.18 mg/g, respectively. The adsorption kinetics are better fitted by the pseudo-second-order model. The partial film along with intra-particle diffusion controlled the diffusion of coloring reagents from the solution bulk to the particle interior pores. Application of MSCB for removing PAR and Ar-III from simulated liquid radioactive waste containing U(VI) and Th(VI) ions has been achieved successfully.

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3