Uranyl oxalate species in high ionic strength environments: stability constants for aqueous and solid uranyl oxalate complexes

Author:

Xiong Yongliang1,Wang Yifeng1

Affiliation:

1. Department of Nuclear Waste Disposal Research & Analysis , Sandia National Laboratories (SNL) , 1515 Eubank Boulevard SE , Albuquerque , NM 87123 , USA

Abstract

Abstract Uranyl ion, UO2 2+, and its aqueous complexes with organic and inorganic ligands can be the dominant species for uranium transport on the Earth surface or in a nuclear waste disposal system if an oxidizing condition is present. As an important biodegradation product, oxalate, C2O4 2−, is ubiquitous in natural environments and is known for its ability to complex with the uranyl ion. Oxalate can also form solid phases with uranyl ion in certain environments thus limiting uranium migration. Therefore, the determination of stability constants for aqueous and solid uranyl oxalate complexes is important not only to the understanding of uranium mobility in natural environments, but also to the performance assessment of nuclear waste disposal. Here we developed a thermodynamic model for the UO2 2+–Na+–H+–Cl–ClO4 –C2O4 2––NO3 –H2O system to ionic strength up to ∼11 mol•kg−1. We constrained the stability constants for UO2C2O4(aq) and UO2(C2O4)2 2− at infinite dilution based on our evaluation of the literature data over a wide range of ionic strengths up to ∼11 mol•kg−1. We also obtained the solubility constants at infinite dilution for solid uranyl oxalates, UO2C2O4•3H2O, based on the solubility data over a wide range of ionic strengths. The developed model will enable for the accurate stability assessment of oxalate complexes affecting uranium mobility under a wide range of conditions including those in deep geological repositories.

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3