Fabrication, swift heavy ion irradiation, and damage analysis of lanthanide targets
Author:
Meyer Carl-Christian12, Artes Ernst123, Bender Markus34, Brötz Joachim5, Düllmann Christoph E.123, Haese Constantin6, Jäger Egon3, Kindler Birgit3, Lommel Bettina3, Major Marton5, Rapps Maximilian12, Renisch Dennis12, Trautmann Christina35, Yakushev Alexander3
Affiliation:
1. Department Chemie – Standort TRIGA , Johannes Gutenberg-Universität Mainz , 55099 Mainz , Germany 2. Helmholtz-Institut Mainz , 55099 Mainz , Germany 3. GSI Helmholtzzentrum für Schwerionenforschung GmbH , 64291 Darmstadt , Germany 4. Hochschule RheinMain – Ingenieurwissenschaften/Angewandte Physik & Medizintechnik , 65428 Rüsselsheim , Germany 5. Technische Universität Darmstadt – Materialwissenschaft , 64287 Darmstadt , Germany 6. Max-Planck-Institut für Polymerforschung , 55099 Mainz , Germany
Abstract
Abstract
One limiting factor in progress in the discovery and study of new superheavy elements (SHE) is the maximum achievable thickness and irradiation stability of current generation actinide targets. The desired thickness of targets, using full excitation function widths, cannot be achieved with current target technology, especially the widely used molecular plating (MP). The aim of this study was to transfer progress in the electrochemistry of lanthanides and actinides to the production of targets. Here, we report on the production of lanthanide targets using anhydrous electrochemical routes. In a first irradiation series, thulium thin films with areal densities up to 1800 μg/cm2 were produced using anhydrous triflate compounds and subjected to irradiation tests, using 6.0 MeV/u 48Ca ions at a fluence of 3.9 × 1014 ions/cm2 and 8.6 MeV/u 197Au ions at fluences in the range of 3.0 × 1011 to 1.0 × 1013 ions/cm2. The thin films were characterised before and after the irradiations using scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX).
Publisher
Walter de Gruyter GmbH
Subject
Physical and Theoretical Chemistry
Reference74 articles.
1. Oganessian, Yu. Ts., Utyonkov, V. Superheavy nuclei from 48Ca-induced reactions. Nucl. Phys. A 2015, 944, 62; https://doi.org/10.1016/j.nuclphysa.2015.07.003. 2. Trautmann, N., Folger, H. Preparation of actinide targets by electrodeposition. Nucl. Instrum. Methods Phys. Res., Sect. A 1989, 282, 102; https://doi.org/10.1016/0168-9002(89)90117-4. 3. Runke, J., Düllmann, Ch. E., Eberhardt, K., Ellison, P., Gregorich, K., Hofmann, S., Jäger, E., Kindler, B., Kratz, J., Krier, J., Lommel, B., Mokry, C., Nitsche, H., Roberto, J. B., Rykaczewski, K. P., Schädel, M., Thörle-Pospiech, P., Trautmann, N., Yakushev, A. Preparation of actinide targets for the synthesis of the heaviest elements. J. Radioanal. Nucl. Chem. 2014, 299, 1081; https://doi.org/10.1007/s10967-013-2616-6. 4. Düllmann, Ch. E., Artes, E., Dragoun, A., Haas, R., Jäger, E., Kindler, B., Lommel, B., Mangold, K.-M., Meyer, C.-C., Mokry, C., Munnik, F., Rapps, M., Renisch, D., Runke, J., Seibert, A., Stöckl, M., Thörle-Pospiech, P., Trautmann, C., Trautmann, N., Yakushev, A. Advancements in the fabrication and characterization of actinide targets for superheavy element production. J. Radioanal. Nucl. Chem. 2023, 332, 1505; https://doi.org/10.1007/s10967-022-08631-4. 5. Dmitriev, S., Popeko, A. High-power radioactive targets as one of the key problems in further development of the research program on synthesis of new superheavy elements. J. Radioanal. Nucl. Chem. 2015, 305, 927; https://doi.org/10.1007/s10967-014-3920-5.
|
|