Evaluation of Re/99mTc-labeled somatostatin receptor-targeting peptide complexes synthesized via direct metal cyclization

Author:

Makris George1,Li Yawen2,Gallazzi Fabio23,Kuchuk Marina1,Wang Jing14,Lewis Michael R.56,Jurisson Silvia S.2,Hennkens Heather M.12

Affiliation:

1. Research Reactor Center, University of Missouri , Columbia , MO 65211 , USA

2. Department of Chemistry , University of Missouri , Columbia , MO 65211 , USA

3. Molecular Interactions Core, University of Missouri , Columbia , MO 65211 , USA

4. Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics , Mianyang , Sichuan 621900 , P. R. China

5. Department of Veterinary Medicine and Surgery , University of Missouri , Columbia , MO 65211 , USA

6. Research Service, Harry S. Truman Memorial Veterans’ Hospital , Columbia , MO 65201 , USA

Abstract

Abstract With interest in the development of somatostatin receptor (SSTR) targeting agents for potential application in diagnostic SPECT imaging (99mTc) or Peptide Radionuclide Receptor Therapy (PRRT, 186Re or 188Re) of neuroendocrine tumors, we present herein 99mTc/Re (radio)complexes synthesized by the integrated (radio)labeling approach of peptide cyclization via metal complexation. In particular, we utilized the potent SSTR2 peptide antagonist sequence DOTA-4-NO2-Phe-c(DCys-Tyr-DTrp-Lys-Thr-Cys)-DTyr-NH2 (DOTA-sst2-ANT) and report the syntheses and in vitro evaluations of its respective [99mTc]Tc/Re-cyclized peptides ([99mTc]Tc/Re-cyc-DOTA-sst2-ANT). The Re-cyc-DOTA-sst2-ANT complex was synthesized via an on-resin Re(V)-cyclization reaction using the ReOCl3(PPh3)2 precursor and consisted of three isomers characterized by LC–ESI-MS. The [99mTc]Tc-cyclized analogue was prepared via a ligand exchange reaction of the [99mTc][TcO]3+ core through a [99mTc]Tc-glucoheptonate intermediate with linear DOTA-sst2-ANT and was characterized by comparative HPLC studies against Re-cyc-DOTA-sst2-ANT. Good in vitro binding affinity was demonstrated in SSTR-expressing cells (AR42J) by the Re-cyc-DOTA-sst2-ANT major isomer, similar to the potent binder Lu-DOTA-sst2-ANT, in which the Lu metal was complexed by the bifunctional chelator DOTA versus via peptide cyclization. [99mTc]Tc-cyc-DOTA-sst2-ANT was obtained in high radiochemical yield, also with an elution pattern of three isomers observed by HPLC analysis, which were comparable yet not identical to those of Re-cyc-DOTA-sst2-ANT. The [99mTc]Tc-tracer complex was shown to be hydrophilic, and stability studies at 4 h demonstrated that it remained intact in both PBS and in rat serum, with low non-specific rat serum protein binding, while exhibiting more moderate stability in 1 mM cysteine. These findings demonstrate that direct Re/[99mTc]Tc-cyclization of DOTA-sst2-ANT is feasible and may be used as an alternative approach to the bifunctional chelate labeling strategy. However, given that the non-radioactive (Re) and radiotracer (99mTc) analogues are not identical and both form isomeric products in equilibrium, additional design modifications will be necessary prior to in vivo application of [99mTc]Tc/Re-cyc-DOTA-sst2-ANT.

Funder

University of Missouri Research Council

Institution of Nuclear Physics and Chemistry Foundation

China Scholarship Council

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3