Chromium sorption on synthetic and natural rock minerals with emphasis on speciation behavior and kinetic model using Cr51

Author:

El-Sayed Ashraf A.1ORCID

Affiliation:

1. Analytical Chemistry Department , Egyptian Atomic Energy Authority, Hot Lab Center , Cairo , 13759 , Egypt

Abstract

Abstract The presence of chromate in the aquatic environment poses toxicity and pollution to the environment. Therefore, the needs to establish methods to get rid of this species is a must. The effect of different natural rock minerals; pyrite, magnetite, pyrrhotite, and wurtzite as constituent parts of the Earth’s crust can play a major role in waste treatment. The properties of those minerals towards the behavior of chromium (sorption) were studied under the effect of changes of pH and contact time to treat the waste solution of toxic chromate. The total chromium species in the reaction system was determined using Cr51 as a simpler, faster and more accurate analytical tools. Concerning the effect of types of minerals, the synthetic ones, the results indicated that pyrrhotite and wurtzite were highly effective for the removal of chromate with almost 100 % sorption capacity as it was pH-independent, despite the presence of a degree of reductive ability of both minerals. While, it was 99 % at pH 8.5 and 28 % at pH 3 for pyrite and magnetite, respectively, which was pH dependent. The equilibrium adsorption capacities for chromium adsorption were 0.34 ± 0.15, 0.028 ± 0.01 and 4.27 ± 1.3 mg/g mineral for natural minerals pyrite, magnetite and synthetic one pyrhotite, respectively. However, it was found 117.7 ± 10.9 mg/g for synthetic mineral wurtzite. These results can be attributed to the redox power of oxide and sulfide minerals; magnetite and, pyrite used. For kinetic studies of chromium (VI) adsorption, non linear model approved that the reaction could be described based on pseudo-second-order kinetics in such simulated environmental heterogeneous systems.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3