The performance of iron-silicate-based biochar as a sorbent material towards 133Ba retention from radioactive liquid waste

Author:

Mahrous Sara S.1,Mansy Muhammad S.23ORCID,Youssef Maha A.2

Affiliation:

1. Environmental Radioactive Pollution Department, Hot Labs, and Waste Management Centre , 68892 Egyptian Atomic Energy Authority , Cairo , Egypt

2. Analytical Chemistry and Control Department, Hot Labs and Waste Management Centre , 68892 Egyptian Atomic Energy Authority , Cairo , Egypt

3. Radioactive Waste Management Unit, Hot Labs and Waste Management Centre , 68892 Egyptian Atomic Energy Authority , Cairo , Egypt

Abstract

Abstract The application of Phalaris seed peel (PSP) for the production of biochar involves the pyrolysis process in an N2 environment, resulting in the creation of a cost-effective sorbent. Two distinct modifications were conducted on the existing biochar (BC), employing just silicate (BC/SiO2) and in combination with iron-silicate (BC/SiO2/Fe). Several analytical methods were used to look at the modified biochar’s physical and chemical properties. These included scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis-differential thermal analysis (TGA-DTA), and surface area analysis. Based on the initial investigations, it has been revealed that the use of silica and iron as the second modification is a more suitable approach for effectively retaining 133Ba from liquid radioactive waste streams. The investigation of sorption kinetics and isotherms was conducted to enhance our understanding of the process. The Langmuir isotherm model demonstrates the most optimal correlation for sorption, yielding a maximum sorption capacity (Q max) of 31 mg/g. Furthermore, an evaluation was performed on the BC/SiO2/Fe sorbent material by subjecting it to a mixture of simulated radioactive liquid waste, which included 133Ba, 60Co, and 137Cs.The experimental results indicate that BC/SiO2/Fe exhibits a comparatively higher sorption capacity for 133Ba when compared to 60Co and 137Cs as competing ions.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3