A novel theranostic probe [111In]In-DO3A-NHS-nimotuzumab in glioma xenograft

Author:

Tang Yu1,Liao Zhonghui1,Li Feize1,Liu Weihao1,Gao Jing1,Li Yuhao2,Hu Yingjiang1,Cai Huawei2,Ma Huan1,Yang Yuanyou1,Yang Jijun1,Liao Jiali1,Liu Ning1

Affiliation:

1. Key Laboratory of Radiation Physics and Technology of Ministry of Education , Institute of Nuclear Science and Technology, Sichuan University , Chengdu 610064 , P. R. China

2. Department of Nuclear Medicine, Laboratory of Clinical Nuclear Medicine , West China Hospital, Sichuan University , Chengdu 610041 , P. R. China

Abstract

Abstract Indium-111 (111In) has an appropriate half-life (T 1/2 = 67 h) and energy characteristics for cancer diagnosis via γ-ray imaging and cancer therapy with Auger electrons. The aim of our study is to evaluate the potential of [111In]In-DO3A-NHS-nimotuzumab as a theranostic agent for radioimmunoimaging (RII) and radioimmunotherapy (RIT) against human glioma xenografts in mice. We explored the chelators DO3A-NHS and DOTA-p-SCN-Bz to optimize 111In radiolabeling efficiency of nimotuzumab. The radiopharmaceuticals were purified by PD-10 mini-column and their in vitro stabilities were assessed. We investigated the biodistribution of [111In]In-DO3A-NHS-nimotuzumab as it had relatively superior labeling efficiency and stability in vitro. We conducted SPECT imaging on mice bearing glioma (U87MG) xenografts, which were injected with ∼3.7 MBq of [111In]In-DO3A-NHS-nimotuzumab. The in vivo radiotherapeutic effects of [111In]In-DO3A-NHS-nimotuzumab was analyzed via injecting a single 37 MBq dose, 2 × 18 MBq doses, or 2 × 37 MBq doses into mice bearing U87MG xenografts. The control groups were administered either 30 μg nimotuzumab or saline. The radiochemical yields of [111In]In-DO3A-NHS-nimotuzumab and [111In]In-DOTA-p-SCN-Bz-nimotuzumab were > 85% and > 75%, respectively. [111In]In-DO3A-NHS-nimotuzumab had > 95% radiochemical purity and was more stable in vitro than [111In]In-DOTA-p-SCN-Bz-nimotuzumab. Biodistribution study demonstrated that [111In]In-DO3A-NHS-nimotuzumab was highly stable in vivo. SPECT imaging disclosed that [111In]In-DO3A-NHS-nimotuzumab had excellent targeted tumor uptake and retained in tumors for 24 and 72 h. All [111In]In-DO3A-NHS-nimotuzumab treatments substantially inhibited tumor growth over the controls. The 2 × 37 MBq treatment was particularly efficacious, and presented with survival time prolonged by ≤66 days. In contrast, the survival time of the control group was only 30 days. In our study, we developed an optimized synthesis protocol for radiopharmaceutical 111In-DO3A-NHS-nimotuzumab and demonstrated that it is a promising theranostic agent. It could be highly efficacious in RII and RIT against EGFR-expressing glioma.

Funder

Key Research Development Project of Sichuan Provincial Department of Science and Technology

Major Science and Technology Projects of Sichuan Province

Strategic Cooperation Project of Luzhou Municipal People’s Government of Sichuan University

Open Program of Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3