A comparison of the extraction behaviour of tris(2-methylbutyl) phosphate and tri-n-alkyl phosphates for the separation of metal ions for U–Zr and U–Pu–Zr systems by cross-current mode

Author:

Kirubananthan Subashree1,Ammath Suresh1,Nagarajan Sivaraman1

Affiliation:

1. Homi Bhabha National Institute (HBNI), Indira Gandhi Centre for Atomic Research , Kalpakkam 603102 , India

Abstract

Abstract Even though, pyroprocessing is considered as a suitable technique for metal fuel processing, attempts are being made in our laboratory to develop a solvent extraction based process as an interim method. Since, the metallic fuels contain considerable amount of Pu(IV) and Zr(IV), the use of conventional extractant tri-n-butyl phosphate (TBP) for reprocessing may pose problems due to third phase formation. In the exploration for the identification of an alternate extractant in the organophosphate family, tris(2-methylbutyl) phosphate (T2MBP), a branched isomer of tri-n-amyl phosphate (TAP) was found to be a potential extractant for nuclear fuel reprocessing. In this context, batch wise extraction and stripping studies with a feed solution containing U(VI) and 6 wt% Zr(IV) were carried out with unirradiated and irradiated 1.1 M solution of T2MBP in n-dodecane (n-DD) and the results were compared with corresponding solutions of TBP and TAP in n-DD. Among all these systems under identical conditions, third phase formation was observed only in the case of irradiated TBP system which makes U–Zr fuel reprocessing difficult using TBP as the extractant. Furthermore, studies have also been carried out with U–Pu–Zr feed solution to understand the extraction and stripping behaviour of these extractants. The stage wise and cumulative percentage of extraction and stripping for each metal ion of these systems were evaluated. Overall, these batch studies indicated that, T2MBP system has comparable extraction and stripping behaviour with U–Zr and U–Pu–Zr feed solutions and T2MBP exhibits better separation factor than TBP.

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3