Adsorption properties and mechanism of uranium by three biomass materials

Author:

Wang Zhe12,Huang Feng-Yu1,Liu Yan1,Yi Fa-Cheng1,Feng Yuan1,Luo Ying1,Jia Wen-Jing1,Wang Zhen-Yu1

Affiliation:

1. Nuclear Wastes and Environmental Safety Laboratory , Southwest University of Science & Technology , Mianyang , Sichuan , 621010 , China

2. College of Earth and Space Sciences, University of Science and Technology of China , Hefei 230026 , China

Abstract

Abstract Wood fibers, bamboo fibers and rice husk were applied to the adsorption of uranium from aqueous solution to understand the uranium adsorption behavior and mechanism by these natural sorbents. The effects of time, adsorbent particle size, pH, adsorbent dosage, temperature and initial concentration were studied using batch technique. The adsorption mechanism was discussed by isothermal adsorption models, adsorption kinetic models. The results suggested that the three biomass adsorbents showed great efficiency of adsorption for uranium. The adsorption capacity of biosorbents of comparatively small particle size and large dosage is quite high. Uranium adsorption achieved a maximum adsorption amount at around pH 3 for wood fibers and bamboo fibers, and around pH 5 for rice husk. All isotherms fitted well to the Langmuir Freundlich and D-R equation, indicating that the adsorption process is favorable and dominated by ion exchange. Rice husk had a highest adsorption capacity, followed by bamboo fibers, while wood fibers had little uranium adsorption under the studied conditions, and the adsorption capacity was 12.22, 11.27 and 11.04 mg/g, respectively. The equilibrium data was well represented by the pseudo-second-order kinetics, indicating that the adsorption rate was controlled by chemical adsorption. Ion exchange was the main adsorption mechanism, and the exchange ions were mainly Na+ and K+.

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3