Future directions of chemical theory and computation

Author:

Lu Yuyuan1,Deng Geng2,Shuai Zhigang3

Affiliation:

1. Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , 130022 Changchun , People’s Republic of China

2. Institute of Education , Tsinghua University , 100084 Beijing , People’s Republic of China

3. Department of Chemistry, MOE Key Laboratoy of Organic OptoElectronics and Molecular Engineering , Tsinghua University , 100084 Beijing , People’s Republic of China

Abstract

Abstract Theoretical and computational chemistry aims to develop chemical theory and to apply numerical computation and simulation to reveal the mechanism behind complex chemical phenomena via quantum theory and statistical mechanics. Computation is the third pillar of scientific research together with theory and experiment. Computation enables scientists to test, discover, and build models/theories of the corresponding chemical phenomena. Theoretical and computational chemistry has been advanced to a new era due to the development of high-performance computational facilities and artificial intelligence approaches. The tendency to merge electronic structural theory with quantum chemical dynamics and statistical mechanics is of increasing interest because of the rapid development of on-the-fly dynamic simulations for complex systems plus low-scaling electronic structural theory. Another challenging issue lies in the transition from order to disorder, from thermodynamics to dynamics, and from equilibrium to non-equilibrium. Despite an increasingly rapid emergence of advances in computational power, detailed criteria for databases, effective data sharing strategies, and deep learning workflows have yet to be developed. Here, we outline some challenges and limitations of the current artificial intelligence approaches with an outlook on the potential future directions for chemistry in the big data era.

Publisher

Walter de Gruyter GmbH

Subject

General Chemical Engineering,General Chemistry

Reference97 articles.

1. D. C. Young. Computational Chemistry: A Practical Guide for Applying Techniques to Real World Problems, John Wiley & Sons, Inc., New York (2001).

2. J. B. Mitchell. Future Med. Chem. 3, 451 (2011), https://doi.org/10.4155/fmc.11.11.

3. G. B. Goh, N. O. Hodas, A. Vishnu. J. Comput. Chem. 38, 1291 (2017), https://doi.org/10.1002/jcc.24764.

4. R. Gómez-Bombarelli, A. Aspuru-Guzik. in Handbook of Materials Modeling: Methods: Theory and Modeling, W. Andreoni, S. Yip (Eds.), pp. 1–24, Springer International Publishing, Cham (2018).

5. K. I. Ramachandran, G. Deepa, K. Namboori. Computational Chemistry and Molecular Modeling: Principles and Applications, Springer-Verlag Berlin Heidelberg, Coimbatore (2008).

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3