Radicals in prebiotic chemistry

Author:

Lim Renee W. J.1,Fahrenbach Albert C.1ORCID

Affiliation:

1. School of Chemistry , University of New South Wales , Sydney , 2052 NSW , Australia

Abstract

Abstract Radical chemistry is tightly interwoven in proposed prebiotic synthetic pathways, reaction networks and geochemical scenarios that have helped shape our understanding of how life could have originated. Gas-phase prebiotic reactions involving electric discharge, vapour ablation by asteroidal and cometary impacts as well as ionising radiation all produce radicals that facilitate complex molecular synthesis. Reactions in the solid phase which are responsible for astrochemical syntheses can also take place through radicals produced via irradiation of protoplanetary/interstellar ice grains and dust particles. Aqueous-phase radical chemistry affords further molecular complexity promoting the production of precursors for the synthesis of biopolymers thought important for the emergence of life. Radical chemistry appears to be a common thread amongst all kinds of prebiotic investigations, and this Review aims to bring attention to a few selected examples. Some important historical studies and modern developments with respect to prebiotic chemistry are summarised through the lens of radical chemistry.

Funder

UNSW’s Strategic Hires and Retention Pathways

Publisher

Walter de Gruyter GmbH

Subject

General Chemical Engineering,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3