EEG signal classification based on SVM with improved squirrel search algorithm

Author:

Shi Miao1,Wang Chao1,Li Xian-Zhe2,Li Ming-Qiang3,Wang Lu1,Xie Neng-Gang2

Affiliation:

1. Department of Mechanical Engineering , Anhui University of Technology , Ma’anshan , Anhui , China

2. Department of Management Science and Engineering , Anhui University of Technology , Ma’anshan , Anhui , China

3. Department of Electrical and Electronic Engineering , Imperial College , London , UK

Abstract

Abstract Electroencephalography (EEG) is a complex bioelectrical signal. Analysis of which can provide researchers with useful physiological information. In order to recognize and classify EEG signals, a pattern recognition method for optimizing the support vector machine (SVM) by using improved squirrel search algorithm (ISSA) is proposed. The EEG signal is preprocessed, with its time domain features being extracted and directed to the SVM as feature vectors for classification and identification. In this paper, the method of good point set is used to initialize the population position, chaos and reverse learning mechanism are introduced into the algorithm. The performance test of the improved squirrel algorithm (ISSA) is carried out by using the benchmark function. As can be seen from the statistical analysis of the results, the exploration ability and convergence speed of the algorithm are improved. This is then used to optimize SVM parameters. ISSA-SVM model is established and built for classification of EEG signals, compared with other common SVM parameter optimization models. For data sets, the average classification accuracy of this method is 85.9%. This result is an improvement of 2–5% over the comparison method.

Funder

Science and Technology Major Project of Anhui Province

Scientific Research Foundation of Education Department of Anhui Province

Ministry of Education, Humanities and Social Sciences

Publisher

Walter de Gruyter GmbH

Subject

Biomedical Engineering

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3