Affiliation:
1. Electronics and Communication Department , Thapar Institute of Engineering and Technology , Patiala , Punjab 147001 , India
Abstract
Abstract
In recent years surface electromyography signals-based machine learning models are rapidly establishing. The efficacy of prosthetic arm growth for transhumeral amputees is aided by efficient classifiers. The paper aims to propose a stacking classifier-based classification system for sEMG shoulder movements. It presents the possibility of various shoulder motions classification of transhumeral amputees. To improve the system performance, adaptive threshold method and wavelet transformation have been applied for features extraction. Six different classifiers Support Vector Machines (SVM), Tree, Random Forest (RF), K-Nearest Neighbour (KNN), AdaBoost and Naïve Bayes (NB) are designed to extract the sEMG data classification accuracy. With cross-validation, the accuracy of RF, Tree and Ada Boost is 97%, 92% and 92% respectively. Stacking classifiers provides an accuracy as 99.4% after combining the best predicted multiple classifiers.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献