Geomagnetic storm effect on equatorial ionosphere over Sri Lanka through total electron content observations from continuously operating reference stations network during Mar–Apr 2022

Author:

Thiruvarangan Venuraj1,Rajavarathan Jenan1ORCID,Panda Sampad Kumar2,Swarnalatha Jayakody Jayakody Arachichilage3

Affiliation:

1. Department of Surveying and Geodesy , 127433 Sabaragamuwa University of Sri Lanka , P.O. Box 02 , Belihuloya , 70140 , Sri Lanka

2. Department of ECE , 207673 K L Deemed to be University, Koneru Lakshmaiah Education Foundation , Vaddeswaram , Andhra Pradesh , 522302 , India

3. Department of Remote Sensing and GIS , 127433 Sabaragamuwa University of Sri Lanka , P.O. Box 02 , Belihuloya , 70140 , Sri Lanka

Abstract

Abstract The technological advancements in the current era have highlighted the increasing significance of satellite-based positioning, navigation, and timing services in a wide range of dynamic and critical applications. This has led to significant efforts towards enhancing the performance of global navigation satellite systems (GNSS) operating under challenging ionospheric conditions. The Sri Lankan ionosphere region is a focal point of equatorial aeronomy scientists, being situated in the southernmost landmass of the Indian longitude sector within the vicinity of the magnetic equator where a combination of electric, wind, and temperature dynamics exerts a substantial influence on the ionosphere but was relatively unexplored in the past. In the present work, we employed a Kriging interpolation technique on the total electron content (TEC) variables from ten GNSS receivers operating under the Continuously Operating Reference Stations (CORS) network in Sri Lanka first ever of its kind to deliver two-dimensional regional ionospheric TEC maps at hourly intervals, both during quiet and disturbed ionospheric conditions in the equinoctial March and April months of 2022. The latitudinal variation patterns are discernable from the hourly TEC maps. Furthermore, a comparative analysis of the performance of GNSS-derived TEC with that of the routinely published Global Ionospheric Maps (GIMs) confirms overestimation characteristics of the latter irrespective of the local time of observation. The generated regional ionospheric maps are fairly responsive to the onset of the storm and the recovery phase thereafter. The extent of nighttime ionospheric irregularity is also probed through the rate of TEC index (ROTI) variations, demonstrating that the irregularities were insignificant during the selected storm event.

Publisher

Walter de Gruyter GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3