Blow-Up Phenomena and Asymptotic Profiles Passing from H 1-Critical to Super-Critical Quasilinear Schrödinger Equations

Author:

Cassani Daniele1,Wang Youjun2

Affiliation:

1. Dipartimento di Scienza e Alta Tecnologia , Università degli Studi dell’Insubria , Como ; and RISM–Riemann International School of Mathematics, Villa Toeplitz, Via G.B. Vico, 46 – 21100 Varese , Italy

2. Department of Mathematics , South China University of Technology , Guangzhou 510640 , P. R. China ; and Dipartimento di Scienza e Alta Tecnologia, Università degli Studi dell’Insubria, via Valleggio 11, 22100 Como, Italy

Abstract

Abstract We study the asymptotic profile, as 0 {\hbar\rightarrow 0} , of positive solutions to - 2 Δ u + V ( x ) u - 2 + γ u Δ u 2 = K ( x ) | u | p - 2 u , x N , -\hbar^{2}\Delta u+V(x)u-\hbar^{2+\gamma}u\Delta u^{2}=K(x)\lvert u\rvert^{p-2% }u,\quad x\in\mathbb{R}^{N}, where γ 0 {\gamma\geqslant 0} is a parameter with relevant physical interpretations, V and K are given potentials and the dimension N is greater than or equal to 5, as we look for finite L 2 {L^{2}} -energy solutions. We investigate the concentrating behavior of solutions when γ > 0 {\gamma>0} and, differently from the case γ = 0 {\gamma=0} where the leading potential is V, the concentration is here localized by the source potential K. Moreover, surprisingly for γ > 0 {\gamma>0} we find a different concentration behavior of solutions in the case p = 2 N N - 2 {p=\frac{2N}{N-2}} and when 2 N N - 2 < p < 4 N N - 2 {\frac{2N}{N-2}<p<\frac{4N}{N-2}} . This phenomenon does not occur when γ = 0 {\gamma=0} .

Publisher

Walter de Gruyter GmbH

Subject

General Mathematics,Statistical and Nonlinear Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multiplicity results for generalized quasilinear critical Schrödinger equations in $${\mathbb {R}}^N$$;Nonlinear Differential Equations and Applications NoDEA;2023-12-12

2. Existence of Solutions for a Quasilinear Schrödinger Equation with Potential Vanishing;Acta Mathematicae Applicatae Sinica, English Series;2023-06-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3