Liouville Theorems for Fractional Parabolic Equations

Author:

Chen Wenxiong1,Wu Leyun2

Affiliation:

1. Department of Mathematical Sciences , Yeshiva University , New York , NY, 10033 , USA

2. School of Mathematical Sciences , MOE-LSC , Shanghai Jiao Tong University , Shanghai , P. R. China ; and Department of Applied Mathematics, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

Abstract

Abstract In this paper, we establish several Liouville type theorems for entire solutions to fractional parabolic equations. We first obtain the key ingredients needed in the proof of Liouville theorems, such as narrow region principles and maximum principles for antisymmetric functions in unbounded domains, in which we remarkably weaken the usual decay condition u 0 u\to 0 at infinity to a polynomial growth on 𝑢 by constructing proper auxiliary functions. Then we derive monotonicity for the solutions in a half space R + n × R \mathbb{R}_{+}^{n}\times\mathbb{R} and obtain some new connections between the nonexistence of solutions in a half space R + n × R \mathbb{R}_{+}^{n}\times\mathbb{R} and in the whole space R n - 1 × R \mathbb{R}^{n-1}\times\mathbb{R} and therefore prove the corresponding Liouville type theorems. To overcome the difficulty caused by the nonlocality of the fractional Laplacian, we introduce several new ideas which will become useful tools in investigating qualitative properties of solutions for a variety of nonlocal parabolic problems.

Publisher

Walter de Gruyter GmbH

Subject

General Mathematics,Statistical and Nonlinear Physics

Reference44 articles.

1. H. Berestycki, I. Capuzzo-Dolcetta and L. Nirenberg, Problèmes elliptiques indéfinis et théorèmes de Liouville non linéaires, C. R. Acad. Sci. Paris Sér. I Math. 317 (1993), no. 10, 945–950.

2. H. Berestycki, F. Hamel and L. Rossi, Liouville-type results for semilinear elliptic equations in unbounded domains, Ann. Mat. Pura Appl. (4) 186 (2007), no. 3, 469–507.

3. H. Berestycki and L. Nirenberg, On the method of moving planes and the sliding method, Bol. Soc. Brasil. Mat. (N. S.) 22 (1991), no. 1, 1–37.

4. M.-F. Bidaut-Véron, Initial blow-up for the solutions of a semilinear parabolic equation with source term, Équations aux dérivées partielles et applications, Gauthier-Villars, Paris (1998), 189–198.

5. I. Birindelli and E. Mitidieri, Liouville theorems for elliptic inequalities and applications, Proc. Roy. Soc. Edinburgh Sect. A 128 (1998), no. 6, 1217–1247.

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3