Affiliation:
1. Dipartimento di Matematica , Università degli Studi di Bari Aldo Moro , Via E. Orabona 4, 70125 Bari , Italy
Abstract
Abstract
The aim of this paper is investigating the existence of one or more
weak solutions of the coupled quasilinear elliptic system of gradient type
\textup{(P)}
{
-
div
(
A
(
x
,
u
)
|
∇
u
|
p
1
-
2
∇
u
)
+
1
p
1
A
u
(
x
,
u
)
|
∇
u
|
p
1
=
G
u
(
x
,
u
,
v
)
in
Ω
,
-
div
(
B
(
x
,
v
)
|
∇
v
|
p
2
-
2
∇
v
)
+
1
p
2
B
v
(
x
,
v
)
|
∇
v
|
p
2
=
G
v
(
x
,
u
,
v
)
in
Ω
,
u
=
v
=
0
on
∂
Ω
,
\left\{\begin{aligned} \displaystyle-\operatorname{div}(A(x,u)|\nabla u|^{p_{1%
}-2}\nabla u)+\frac{1}{p_{1}}A_{u}(x,u)|\nabla u|^{p_{1}}&\displaystyle=G_{u}(%
x,u,v)&&\displaystyle\phantom{}\text{in~{}${\Omega}$,}\\
\displaystyle-\operatorname{div}(B(x,v)|\nabla v|^{p_{2}-2}\nabla v)+\frac{1}{%
p_{2}}B_{v}(x,v)|\nabla v|^{p_{2}}&\displaystyle=G_{v}(x,u,v)&&\displaystyle%
\phantom{}\text{in~{}${\Omega}$,}\\
\displaystyle u=v&\displaystyle=0&&\displaystyle\phantom{}\text{on ${\partial%
\Omega}$,}\end{aligned}\right.
where
Ω
⊂
ℝ
N
{\Omega\subset\mathbb{R}^{N}}
is an open bounded domain,
p
1
{p_{1}}
,
p
2
>
1
{p_{2}>1}
and
A
(
x
,
u
)
{A(x,u)}
,
B
(
x
,
v
)
{B(x,v)}
are
𝒞
1
{\mathcal{C}^{1}}
-Carathéodory functions on
Ω
×
ℝ
{\Omega\times\mathbb{R}}
with partial derivatives
A
u
(
x
,
u
)
{A_{u}(x,u)}
, respectively
B
v
(
x
,
v
)
{B_{v}(x,v)}
, while
G
u
(
x
,
u
,
v
)
{G_{u}(x,u,v)}
,
G
v
(
x
,
u
,
v
)
{G_{v}(x,u,v)}
are given Carathéodory maps defined on
Ω
×
ℝ
×
ℝ
{\Omega\times\mathbb{R}\times\mathbb{R}}
which are partial derivatives of a function
G
(
x
,
u
,
v
)
{G(x,u,v)}
.
We prove that, even if the coefficients make the variational approach more difficult,
under suitable hypotheses functional
𝒥
{{\mathcal{J}}}
, related to problem (P),
admits at least one critical point in the “right” Banach space X.
Moreover, if
𝒥
{{\mathcal{J}}}
is even, then (P) has infinitely many weak bounded solutions.
The proof, which exploits the interaction between two different norms,
is based on a weak version of the Cerami–Palais–Smale condition, a
“good” decomposition of the Banach space X
and suitable generalizations of the Ambrosetti–Rabinowitz Mountain Pass Theorems.
Subject
General Mathematics,Statistical and Nonlinear Physics