Existence and Multiplicity Results for a Class of Coupled Quasilinear Elliptic Systems of Gradient Type

Author:

Candela Anna Maria1ORCID,Salvatore Addolorata1ORCID,Sportelli Caterina1ORCID

Affiliation:

1. Dipartimento di Matematica , Università degli Studi di Bari Aldo Moro , Via E. Orabona 4, 70125 Bari , Italy

Abstract

Abstract The aim of this paper is investigating the existence of one or more weak solutions of the coupled quasilinear elliptic system of gradient type \textup{(P)} { - div ( A ( x , u ) | u | p 1 - 2 u ) + 1 p 1 A u ( x , u ) | u | p 1 = G u ( x , u , v ) in  Ω , - div ( B ( x , v ) | v | p 2 - 2 v ) + 1 p 2 B v ( x , v ) | v | p 2 = G v ( x , u , v ) in  Ω , u = v = 0 on  Ω , \left\{\begin{aligned} \displaystyle-\operatorname{div}(A(x,u)|\nabla u|^{p_{1% }-2}\nabla u)+\frac{1}{p_{1}}A_{u}(x,u)|\nabla u|^{p_{1}}&\displaystyle=G_{u}(% x,u,v)&&\displaystyle\phantom{}\text{in~{}${\Omega}$,}\\ \displaystyle-\operatorname{div}(B(x,v)|\nabla v|^{p_{2}-2}\nabla v)+\frac{1}{% p_{2}}B_{v}(x,v)|\nabla v|^{p_{2}}&\displaystyle=G_{v}(x,u,v)&&\displaystyle% \phantom{}\text{in~{}${\Omega}$,}\\ \displaystyle u=v&\displaystyle=0&&\displaystyle\phantom{}\text{on ${\partial% \Omega}$,}\end{aligned}\right. where Ω N {\Omega\subset\mathbb{R}^{N}} is an open bounded domain, p 1 {p_{1}} , p 2 > 1 {p_{2}>1} and A ( x , u ) {A(x,u)} , B ( x , v ) {B(x,v)} are 𝒞 1 {\mathcal{C}^{1}} -Carathéodory functions on Ω × {\Omega\times\mathbb{R}} with partial derivatives A u ( x , u ) {A_{u}(x,u)} , respectively B v ( x , v ) {B_{v}(x,v)} , while G u ( x , u , v ) {G_{u}(x,u,v)} , G v ( x , u , v ) {G_{v}(x,u,v)} are given Carathéodory maps defined on Ω × × {\Omega\times\mathbb{R}\times\mathbb{R}} which are partial derivatives of a function G ( x , u , v ) {G(x,u,v)} . We prove that, even if the coefficients make the variational approach more difficult, under suitable hypotheses functional 𝒥 {{\mathcal{J}}} , related to problem (P), admits at least one critical point in the “right” Banach space X. Moreover, if 𝒥 {{\mathcal{J}}} is even, then (P) has infinitely many weak bounded solutions. The proof, which exploits the interaction between two different norms, is based on a weak version of the Cerami–Palais–Smale condition, a “good” decomposition of the Banach space X and suitable generalizations of the Ambrosetti–Rabinowitz Mountain Pass Theorems.

Publisher

Walter de Gruyter GmbH

Subject

General Mathematics,Statistical and Nonlinear Physics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3