Sharp Blow-Up Profiles of Positive Solutions for a Class of Semilinear Elliptic Problems

Author:

Li Wan-Tong1,López-Gómez Julián2,Sun Jian-Wen1

Affiliation:

1. School of Mathematics and Statistics , Lanzhou University , Lanzhou , 730000 , P. R. China

2. Institute of Interdisciplinary, Mathematics (IMI) , Department of Mathematical Analysis and Applied Mathematics , Complutense University , 28040 - Madrid , Spain

Abstract

Abstract This paper analyzes the behavior of the positive solution θ ε {\theta_{\varepsilon}} of the perturbed problem { - Δ u = λ m ( x ) u - [ a ε ( x ) + b ε ( x ) ] u p = 0 in Ω , B u = 0 on Ω , \left\{\begin{aligned} \displaystyle{}{-\Delta u}&\displaystyle=\lambda m(x)u-% [a_{\varepsilon}(x)+b_{\varepsilon}(x)]u^{p}=0&&\displaystyle\text{in}\ \Omega% ,\\ \displaystyle Bu&\displaystyle=0&&\displaystyle\text{on}\ \partial\Omega,\end{% aligned}\right. as ε 0 {\varepsilon\downarrow 0} , where a ε ( x ) ε α a ( x ) {a_{\varepsilon}(x)\approx\varepsilon^{\alpha}a(x)} and b ε ( x ) ε β b ( x ) {b_{\varepsilon}(x)\approx\varepsilon^{\beta}b(x)} for some α 0 {\alpha\geq 0} and β 0 {\beta\geq 0} , and some Hölder continuous functions a ( x ) {a(x)} and b ( x ) {b(x)} such that a 0 {a\gneq 0} (i.e., a 0 {a\geq 0} and a 0 {a\not\equiv 0} ) and min Ω ¯ b > 0 {\min_{\bar{\Omega}}b>0} . The most intriguing and interesting case arises when a ( x ) {a(x)} degenerates, in the sense that Ω 0 int a - 1 ( 0 ) {\Omega_{0}\equiv\operatorname{int}a^{-1}(0)} is a non-empty smooth open subdomain of Ω, as in this case a “blow-up” phenomenon appears due to the spatial degeneracy of a ( x ) {a(x)} for sufficiently large λ. In all these cases, the asymptotic behavior of θ ε {\theta_{\varepsilon}} will be characterized according to the several admissible values of the parameters α and β. Our study reveals that there may exist two different blow-up speeds for θ ε {\theta_{\varepsilon}} in the degenerate case.

Publisher

Walter de Gruyter GmbH

Subject

General Mathematics,Statistical and Nonlinear Physics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fine patterns for a nonlocal periodic-parabolic equation with spatial degeneracy;Journal of Differential Equations;2024-02

2. Local diffusion vs. nonlocal dispersal in periodic logistic equations;Journal of Differential Equations;2023-05

3. Degeneracies versus reactions for some nonlocal dispersal equations;Journal de Mathématiques Pures et Appliquées;2023-03

4. Asymptotic profiles for positive solutions of diffusive logistic equations;Proceedings of the Royal Society of Edinburgh: Section A Mathematics;2023-02-15

5. Sharp profiles for diffusive logistic equation with spatial heterogeneity;Advanced Nonlinear Studies;2023-01-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3