Affiliation:
1. Dipartimento di Matematica , Università di Roma “Tor Vergata” , Via della Ricerca Scientifica n. 1, 00133 Roma , Italy
2. Dipartimento di Matematica “E. De Giorgi” , Università di Lecce , P.O. Box 193, 73100 Lecce , Italy
Abstract
Abstract
We deal with Dirichlet problems of the form
{
Δ
u
+
f
(
u
)
=
0
in
Ω
,
u
=
0
on
∂
Ω
,
\left\{\begin{aligned} \displaystyle{}\Delta u+f(u)&\displaystyle=0&&%
\displaystyle\phantom{}\text{in }\Omega,\\
\displaystyle u&\displaystyle=0&&\displaystyle\phantom{}\text{on }\partial%
\Omega,\end{aligned}\right.
where Ω is a bounded domain of
ℝ
n
{\mathbb{R}^{n}}
,
n
≥
3
{n\geq 3}
, and f has
supercritical growth from the viewpoint of Sobolev embedding.
In particular, we consider the case where Ω is a tubular domain
T
ε
(
Γ
k
)
{T_{\varepsilon}(\Gamma_{k})}
with thickness
ε
>
0
{{\varepsilon}>0}
and center
Γ
k
{\Gamma_{k}}
, a
k-dimensional, smooth, compact submanifold of
ℝ
n
{\mathbb{R}^{n}}
.
Our main result concerns the case where
k
=
1
{k=1}
and
Γ
k
{\Gamma_{k}}
is
contractible in itself.
In this case we prove that the problem does not have nontrivial
solutions for
ε
>
0
{{\varepsilon}>0}
small enough.
When
k
≥
2
{k\geq 2}
or
Γ
k
{\Gamma_{k}}
is noncontractible in itself we obtain
weaker nonexistence results.
Some examples show that all these results are sharp for what concerns
the assumptions on k and f.
Subject
General Mathematics,Statistical and Nonlinear Physics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献