Development Of High-Resolution Mechanical Spectroscopy, HRMS: Status And Perspectives. HRMS Coupled With A Laser Dilatometer

Author:

Magalas L.B.

Abstract

Abstract Recent achievements in the development of low-frequency high-resolution mechanical spectroscopy (HRMS) are briefly reported. It is demonstrated that extremely low values of the loss angle, ϕ, (tanϕb = 1×10−5) can be measured as a function of frequency, and the precision in estimation of the dynamic modulus is better than 1×10−5 in arbitrary units. Three conditions must be fulfilled to obtain high resolution in subresonant and resonant mechanical loss measurements: (1) noise in stress and elastic strain signals must be lower than 70 dB, (2) high quality of stress and strain signals must be tested both in the frequency- and time-domains, and (3) the estimation of the mechanical loss and modulus must be verified by at least two different computing methods operating in the frequency- and time-domains. It is concluded that phase measurements in the subresonant domain are no longer determined by precision in estimation of the loss angle. Recent developments in high-resolution resonant mechanical loss measurements stem from the application of advanced nonparametric and parametric computing methods and algorithms to estimate the logarithmic decrement and the elastic modulus from exponentially damped free decaying oscillations embedded in experimental noise. It is emphasized that HRMS takes into account the presence of noise in the stress and strain signals, which has not yet been addressed in the literature. The coupling of a low-frequency mechanical spectrometer with an in-situ laser dilatometer is suggested as a new perspective research area in Materials Science.

Publisher

Walter de Gruyter GmbH

Subject

Metals and Alloys

Reference37 articles.

1. Further evidence of grain boundary internal friction in bicrystals;Jiang;Mater Sci Eng,2010

2. San Juan Damping behavior during martensitic transformation in shape memory alloys;Nó;Alloy Compd,2003

3. Anna Apparatus for dynamic and static measurements of mechanical properties of solids and of flux - lattice in type - II superconductors at low frequency Hz and temperature;Benoit;Rev Sci Instrum,1990

4. Ghost internal friction peaks ghost asymmetrical peak broadening and narrowing Misunderstandings consequences and solution;Magalas;Mater Sci Eng,2009

5. de Correlation between expansivity and internal friction during the martensitic transformation in Fe - Ni and Fe alloys of the on Martensitic Transformations The Japan Institute of Metals;Rodrigues;Proc Int Conf,1986

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3