Effect of Temperature Fields Heterogeneity in the Tundish on Primary Structure of Continuously Cast Ingots

Author:

Pieprzyca J.,Kudliński Z.,Merder T.

Abstract

AbstractThe formation of the cast strands’ primary structure is a very complex process in terms of the thermodynamics and physicochemical. It occurs during solidification and crystallization of the liquid steel in the crystallizer and in the secondary cooling zone of the CC device. On the basis of the experience gained in the industry and knowledge arising from theory of metals and alloys solidification it can be concluded, that substantial influence on the shape of cast strands primary structure have the temperature of overheating of the liquid steel above liquidus temperature and solidification velocity. A proper control of those casting parameters allows to obtain the cast strands with desired primary structure. In the one and two-way symmetric devices regulation like this is not problematic, in the multi-way devices - specially in the asymmetric - causes a series of problems. In those devices can occur a major temperature difference in each outlet zone of the tundish working space caused by i.e. the distance length diversity of liquid steel stream from the inlet to each outlet and by disadvantageous layout of liquid steel flow zones (turbulent flow zone, plug flow and dead zones) in working area of tundish. Particularly high values of those diversity can be expected in the asymmetric tundishes.The article presents results of laboratory research - model and industrial regarding impact of the liquid steel overheating temperature, but also heterogeneity of the temperature fields in the tundish on primary structure of the cast strands.

Publisher

Walter de Gruyter GmbH

Subject

Metals and Alloys

Reference7 articles.

1. of And;Cwudziński;Archives Metallurgy Materials,2012

2. The art and of crystal growing New York;Tiller;science,1963

3. of Metal lurgy and Materials;Burbelko;Archives,2012

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3