Effect Of Natural Convection On Directional Solidification Of Pure Metal

Author:

Skrzypczak T.,Węgrzyn-Skrzypczak E.,Winczek J.

Abstract

AbstractThe paper is focused on the modeling of the directional solidification process of pure metal. During the process the solidification front is sharp in the shape of the surface separating liquid from solid in three dimensional space or a curve in 2D. The position and shape of the solid-liquid interface change according to time. The local velocity of the interface depends on the values of heat fluxes on the solid and liquid sides. Sharp interface solidification belongs to the phase transition problems which occur due to temperature changes, pressure, etc. Transition from one state to another is discontinuous from the mathematical point of view. Such process can be identified during water freezing, evaporation, melting and solidification of metals and alloys, etc.The influence of natural convection on the temperature distribution and the solid-liquid interface motion during solidification of pure copper is studied. The mathematical model of the process is based on the differential equations of heat transfer with convection, Navier-Stokes equation and the motion of the interface. This system of equations is supplemented by the appropriate initial and boundary conditions. In addition the continuity conditions at the solidification interface must be properly formulated. The solution involves the determination of the temporary temperature and velocity fields and the position of the interface. Typically, it is impossible to obtain the exact solution of such problem. The numerical model of solidification of pure copper in a closed cavity is presented, the influence of the natural convection on the phase change is investigated. Mathematical formulation of the problem is based on the Stefan problem with moving internal boundaries. The equations are spatially discretized with the use of fixed grid by means of the Finite Element Method (FEM). Front advancing technique uses the Level Set Method (LSM). Chorin’s projection method is used to solve Navier-Stokes equation. Such approach makes possible to uncouple velocities and pressure. The Petrov-Galerkin formulation is employed to stabilize numerical solutions of the equations. The results of numerical simulations in the 2D region are discussed and compared to the results obtained from the simulation where movement of the liquid phase was neglected.

Publisher

Walter de Gruyter GmbH

Subject

Metals and Alloys

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3