Recognition of facial expression of fetuses by artificial intelligence (AI)

Author:

Miyagi Yasunari123,Hata Toshiyuki45,Bouno Saori4,Koyanagi Aya4,Miyake Takahito14

Affiliation:

1. Department of Gynecology , Miyake Ofuku Clinic , Okayama , Japan

2. Medical Data Labo , Okayama , Japan

3. Department of Gynecologic Oncology , Saitama Medical University International Medical Center , Hidaka , Japan

4. Department of Obstetrics and Gynecology , Miyake Clinic , Okayama , Japan

5. Department of Perinatology and Gynecology , Kagawa University Graduate School of Medicine , Kagawa , Japan

Abstract

Abstract Objectives The development of the artificial intelligence (AI) classifier to recognize fetal facial expressions that are considered as being related to the brain development of fetuses as a retrospective, non-interventional pilot study. Methods Images of fetal faces with sonography obtained from outpatient pregnant women with a singleton fetus were enrolled in routine conventional practice from 19 to 38 weeks of gestation from January 1, 2020, to September 30, 2020, with completely de-identified data. The images were classified into seven categories, such as eye blinking, mouthing, face without any expression, scowling, smiling, tongue expulsion, and yawning. The category in which the number of fetuses was less than 10 was eliminated before preparation. Next, we created a deep learning AI classifier with the data. Statistical values such as accuracy for the test dataset and the AI confidence score profiles for each category per image for all data were obtained. Results The number of fetuses/images in the rated categories were 14/147, 23/302, 33/320, 8/55, and 10/72 for eye blinking, mouthing, face without any expression, scowling, and yawning, respectively. The accuracy of the AI fetal facial expression for the entire test data set was 0.985. The accuracy/sensitivity/specificity values were 0.996/0.993/1.000, 0.992/0.986/1.000, 0.985/1.000/0.979, 0.996/0.888/1.000, and 1.000/1.000/1.000 for the eye blinking, mouthing, face without any expression, scowling categories, and yawning, respectively. Conclusions The AI classifier has the potential to objectively classify fetal facial expressions. AI can advance fetal brain development research using ultrasound.

Publisher

Walter de Gruyter GmbH

Subject

Obstetrics and Gynecology,Pediatrics, Perinatology and Child Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3