Maximally nonlinear functions over finite fields

Author:

Ryabov Vladimir G.

Abstract

Abstract An n-place function over a field F q $ \mathbf {F}_q $ with q elements is called maximally nonlinear if it has the largest nonlinearity among all q-valued n-place functions. We show that, for even n=2, a function is maximally nonlinear if and only if its nonlinearity is q n 1 ( q 1 ) q n 2 1 $ q^{n-1}(q - 1) - q^{\frac n2-1} $ ; for n=1, the corresponding criterion for maximal nonlinearity is q − 2. For q > 2 $ q \gt 2 $ and even n=2, we describe the set of all maximally nonlinear quadratic functions and find its cardinality. In this case, all maximally nonlinear quadratic functions are quadratic bent functions and their number is smaller than the halved number of the bent functions.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Discrete Mathematics and Combinatorics

Reference13 articles.

1. Ambrosimov A. S., “Properties of bent functions of q-valued logic over finite fields”, Discrete Math. Appl., 4:4 (1994), 341–350.

2. Ambrosimov A. S., “Approximation of k-ary functions by functions from the given system”, Fundam. Prikl. Mat., 3:3 (1997), 653–674 (in Russian).

3. Kuz’min A. S., Nechaev A. A., Shishkin V. A., “Bent and hyper-bent functions over the finite field”, Trudy po Diskretnoy Matematike, 10, Fizmatlit, Moscow, 2007, 97–122 (in Russian).

4. Lidl R., Niederreiter H., Finite Fields, Addison-Wesley Publ. Inc., 1983, 755 pp.

5. MacWilliams E. J., Sloane N. J. A., The Theory of Error-Correcting Codes. Parts I, II., North-Holland, Amsterdam, 1977.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Approximation of vectorial functions over finite fields and their restrictions to linear manifolds by affine analogues;Discrete Mathematics and Applications;2023-12-01

2. Nonlinearity of functions over finite fields;Discrete Mathematics and Applications;2023-08-01

3. Criteria for maximal nonlinearity of a function over a finite field;Discrete Mathematics and Applications;2023-03-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3