Affiliation:
1. Department of Control Science and Engineering Opole University of Technology Prószkowska 76 45-758 Opole , Poland
Abstract
Abstract
The advanced analytical study in the field of fractional-order non-full rank inverse model control design is presented in the paper. Following the recent results in this matter it is certain, that the inverse model control-oriented perfect control law can be established for the non-full rank integer-order systems being under the discrete-time state-space reference with zero value. It is shown here, that the perfect control paradigm can be extended to cover the multivariable non-full rank plants governed by the more general Grünwald-Letnikov discrete-time state-space model. Indeed, the postulated approach significantly reduces both iterative and non-iterative computational effort, mainly derived from the approximation of the Moore-Penrose inverse of the non-full rank matrices to finally be inverted. A prevention provided by the new method excludes the detrimental matrix behavior in the form of singularity, often avoided due to the observed ill-conditioned sensitivity. Thus, the new defined robust fractional-order non-full rank instance of such control strategy, supported by the pole-free mechanism, gives rise to the introduction of the general unified non-full rank perfect control-originated theory. Numerical algorithms with simulation investigation clearly confirm the innovative peculiarities provided by the manuscript.
Subject
Applied Mathematics,Analysis
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献