An efficient localized collocation solver for anomalous diffusion on surfaces

Author:

Tang Zhuochao12,Fu Zhuojia1234,Sun HongGuang2,Liu Xiaoting2

Affiliation:

1. Key Laboratory of Ministry of Education for Coastal Disaster and Protection Hohai University Nanjing , China

2. Center for Numerical Simulation Software in Engineering and Sciences College of Mechanics and Materials , Hohai University Nanjing , China

3. Institute of Continuum Mechanics Leibniz University Hannover Hannover , Germany

4. State Key Laboratory of Mechanics and Control of Mechanical Structures Nanjing University of Aeronautics and Astronautics Nanjing , China

Abstract

Abstract This paper introduces an efficient collocation solver, the generalized finite difference method (GFDM) combined with the recent-developed scale-dependent time stepping method (SD-TSM), to predict the anomalous diffusion behavior on surfaces governed by surface time-fractional diffusion equations. In the proposed solver, the GFDM is used in spatial discretization and SD-TSM is used in temporal discretization. Based on the moving least square theorem and Taylor series, the GFDM introduces the stencil selection algorithms to choose the stencil support of a certain node from the whole discretization nodes on the surface. It inherits the similar properties from the standard FDM and avoids the mesh generation, which is available particularly for high-dimensional irregular discretization nodes. The SD-TSM is a non-uniform temporal discretization method involving the idea of metric, which links the fractional derivative order with the non-uniform discretization strategy. Compared with the traditional time stepping methods, GFDM combined with SD-TSM deals well with the low accuracy in the early period. Numerical investigations are presented to demonstrate the efficiency and accuracy of the proposed GFDM in conjunction with SD-TSM for solving either single or coupled fractional diffusion equations on surfaces.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Analysis

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3