Approximate calculation of the Caputo-type fractional derivative from inaccurate data. Dynamical approach

Author:

Surkov Platon G.12

Affiliation:

1. Krasovskii Institute of Mathematics and Mechanics , Ural Brach of Russian Academy of Sciences , 16 S. Kovalevskaya Str. , Ekaterinburg , Russia

2. Institute of Natural Sciences and Mathematics , Ural Federal University , 19 Mira Str. , Ekaterinburg , Russia

Abstract

Abstract A specific formulation of the “classical” problem of mathematical analysis is considered. This is the problem of calculating the derivative of a function. The purpose of this work is to construct an algorithm for the approximate calculation of the Caputo-type fractional derivative based on the methods of control theory. The input data of the algorithm is represented by inaccurate measured function values at discrete, frequently enough, times. The proposed algorithm is based on two aspects: a local modification of the Tikhonov regularization method from the theory of ill-posed problems and the Krasovskii extremal shift method from the guaranteed control theory, both of which ensure the stability to informational noises and computational errors. Numerical experiments were carried out to illustrate the operation of the algorithm.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Analysis

Reference64 articles.

1. V.V. Arestov, Approximation of unbounded operators by bounded operators and related extremal problems. Russ. Math. Surv. 51, No 6 (1996), 1093-1126.

2. V.V. Arestov, Best uniform approximation of the differentiation operator by operators bounded in the space. Tr. Inst. Mat. Mekh. UrO RAN 24, No 4 (2018), 34-56.

3. Y. Bar-Shalom, X.R. Li, Estimation and Tracking: Principles, Techniques, and Software. Boston, Artech House (1993).

4. H. Bateman (ds. A. Erdèlyi et al.), Higher Transcendental Functions. Vol. III. McGraw-Hill Book Co., Inc., New York (1955).

5. E.E. Berdysheva, M.A. Filatova, On the best approximation of the infinitesimal generator of a contraction semigroup in a Hilbert space. Ural Math. J. 3, No 2 (2017), 40-45.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3