A quadrilateral flat-shell element for the static and dynamic analysis of composite and sandwich cylindrical, spherical and conical shell panels

Author:

Dagade Vaishali Atulkumar1,Kulkarni Shripad2

Affiliation:

1. Department of Civil Engineering , College of Engineering Pune , Shivajinagar, Pune 411005, Maharashtra , India ; dagadeva14.civil@coep.ac.in

2. Department of Civil Engineering , College of Engineering Pune , Shivajinagar, Pune 411005, Maharashtra , India

Abstract

Abstract A quadrilateral flat-shell element is developed for analysing the deflections, stresses and natural frequencies along with their allied mode shapes of cylindrical, spherical, and conical shell panels made up of layered composite and sandwich material. The developed element (DKZigTS1) is based on zigzag theory and has seven local as well as global DOF per node. The concept of obtaining transformation matrix is used for transforming actions and reactions from local to global direction to convert the plate bending into a flat-shell element. The two separate coordinate systems are used to transform rotational and translational degrees-of-freedom (DOF), from local to global direction. The local translational DOF are transformed to global Cartesian coordinates (x, y, z) and the local rotational DOF are transformed to the surface coordinate system (ξ 1, ξ 2, ξ 3), in which ξ 3 is perpendicular to the surface. The DKZigTS1 element gives fairly accurate results that align with the 2D analytical and the 3D elasticity solutions, reported in the literature for moderately thick and thick shell panel. The present results are also in good agreement with the 3D finite element solutions for shallow and deep shell panels having various material properties, boundary restrained environments, and geometrical shapes considered in this study.

Publisher

Walter de Gruyter GmbH

Subject

Mechanics of Materials,Safety, Risk, Reliability and Quality,Aerospace Engineering,Building and Construction,Civil and Structural Engineering,Architecture,Computational Mechanics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3