Structural function analysis of shear walls in sustainable assembled buildings under finite element model

Author:

Cao Yaxian1

Affiliation:

1. College of Art and Design, Inner Mongolia Technical College of Construction , Hohhot , 010070 , China

Abstract

Abstract With the quick progress of industrialization and urbanization, the construction industry has become one of the largest energy-consuming industries. However, the current prefabricated shear wall focuses on the upgrade of seismic function, with less analysis of the energy efficiency of the overall structure. In this study, a sustainable prefabricated building shear wall that takes into account both energy conservation and stress is first proposed, and then the shear wall is modelled by finite element method (FEM) software. Meanwhile, the force functions of the shear wall model, including concrete strength, axial condensability rate, and aspect rate, and finally the seismic function are verified. The experimental outcomes demonstrate that the maximum difference between the FEM analysis outcomes and the test data is only 10.66%, and the overall difference in the outcomes is relatively small. The larger the aspect rate of the proposed sustainable assembled shear wall model, the better the ductility of the member, and the bigger the axial condensability rate and concrete strength, the lower the ductility of the member. In the seismic function analysis, the maximum layer displacement angles of this shear wall are all less than 1/120, which is in line with the national seismic code. This indicates its good seismic function and provides a methodological reference for the upgrade of the structural function of shear walls.

Publisher

Walter de Gruyter GmbH

Subject

Mechanics of Materials,Safety, Risk, Reliability and Quality,Aerospace Engineering,Building and Construction,Civil and Structural Engineering,Architecture,Computational Mechanics

Reference27 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3