Modelling Electricity Price Expectations in a Day-Ahead Market: A Case of Latvia

Author:

Bobinaite Viktorija1,Zuters Jānis1

Affiliation:

1. University of Latvia Latvia

Abstract

Abstract The paper aims at modelling the electricity generator’s expectations about price development in the Latvian day-ahead electricity market. Correlation and sensitivity analysis methods are used to identify the key determinants of electricity price expectations. A neural network approach is employed to model electricity price expectations. The research results demonstrate that electricity price expectations depend on the historical electricity prices. The price a day ago is the key determinant of price expectations and the importance of the lagged prices reduces as the time backwards lengthens. Nine models of electricity price expectations are prepared for different natural seasons and types of the day. The forecast accuracy of models varies from high to low, since errors are 7.02 % to 59.23 %. The forecasting power of models for weekends is reduced; therefore, additional determinants of electricity price expectations should be considered in the models and advanced input selection algorithms should be applied in future research. Electricity price expectations affect the generator’s loss through the production decisions, which are made considering the expected (forecasted) prices. The models allow making the production decision at a sufficient level of accuracy.

Publisher

Walter de Gruyter GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3