Fabrication of ultrahigh-molecular-weight polyethylene porous implant for bone application

Author:

Olalde Beatriz1,Ayerdi-Izquierdo Ana1,Fernández Rubén1,García-Urkia Nerea1,Atorrasagasti Garbiñe1,Bijelic Goran1

Affiliation:

1. TECNALIA, Basque Research and Technology Alliance (BRTA), Parque Tecnológico , Paseo Mikeletegi 2 , Donostia- San Sebastián , Spain

Abstract

Abstract Porous implants play a crucial role in allowing ingrowth of host connective tissue and thereby help in keeping the implant in its place. With the aim of mimicking the microstructure of natural extracellular matrix, ultrahigh-molecular-weight polyethylene (UHMWPE) porous samples with a desirable pore size distribution were developed by combining thermally induced phase separation and salt leaching techniques. The porous UHMWPE samples consisted of a nanofibrous UHMWPE matrix with a fibre diameter smaller than 500 nm, highly interconnected, with a controllable pore diameter from nanoscale to 300 µm. Moreover, a porous UHMWPE sample was also developed as a continuous and homogeneous coating onto the UHMWPE dense sample. The dense/porous UHMWPE sample supported human foetal osteoblast 1.19 cell line proliferation and differentiation, indicating the potential of porous UHMWPE with a desirable pore size distribution for bone application. An osseointegration model in the sheep revealed substantial bone formation within the pore layer at 12 weeks via SEM evaluation. Ingrown bone was more closely opposed to the pore wall when compared to the dense UHMWPE control. These results indicate that dense/porous UHMWPE could provide improved osseointegration while maintaining the structural integrity necessary for load-bearing orthopaedic application.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,Polymers and Plastics,General Chemical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3