Pulverization of end-of-life tires by ultra-high pressure water jet process

Author:

Wang Zefeng,Kang Yong,Wang Zhao

Abstract

Abstract Crumb rubber (CR), as a final product from end-of-life tires through size reduction process, has proved an appropriate end product for accumulated discard waste tires all around the world. Unlike pre-existing pulverization methods, such as ambient or cryogenic grinding and solid-state shear extrusion, an entire cool pulverization process utilizing ultra-high pressure water jet (UHPWJ) was proposed in this paper. Pulverization experiments under various processing parameters were designed and conducted. The particle size distributions of produced CR were obtained using laser particle analyzer. Microscopic morphologies of CR and rubber fracture surface were observed under scanning electron microscopy. The crosslink density and gel fraction of produced CR were experimentally determined. Influence of four main processing parameters as pump pressure, transverse velocity, standoff distance and impacting angle was discussed in detail, and the most suitable processing parameters were recommended. The results show that the particle size distribution of produced CR with UHPWJ is between 45 μm and 200 μm, and the surface of CR is coarse and porous. High compressive shear effect and erosion are the main mechanisms in UHPWJ pulverization. Besides, the produced CR has already been partly devulcanized after UHPWJ pulverization, and polymer degradation occurred in the meanwhile.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,Polymers and Plastics,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3