An environmentally sustainable isosorbide-based plasticizer for biodegradable poly(butylene succinate)

Author:

Jiang Ying Yong12,Ren Liang12ORCID,Wu Gui Hui12,Guo Wei12,Guan Xian Feng12,Zhang Ming Yao12,Zhang Hui Xuan12

Affiliation:

1. National Engineering Laboratory for Polymer Materials Synthesis and Application Technology, Changchun University of Technology , Changchun 130012 , China

2. School of Chemical Engineering, Changchun University of Technology , Changchun 130012 , China

Abstract

Abstract In this article, isosorbide divalerate (SDV), an alternative renewable resource plasticizer for degradable poly(butylene succinate) (PBS) was successfully synthesized with isosorbide and valeric acid, and was characterized by Fourier transform infrared (FTIR). The mechanical properties, glass transition temperature (T g ), crystallization properties, rheological behavior of PBS/SDV blends was studied in detail. The results showed that incorporation of SDV had successfully reduced T g of the PBS composites, particularly at 20 wt% SDV, where the value of T g exhibited a reduction of 12 °C or 39% compared to pure PBS, demonstrating SDV possessed plasticizing efficacy. The crystallinity of PBS was declined by presence of SDV in the blends, and the incorporation of 20 wt% SDV into PBS matrix promoted an impressive decrease of exceeding 22%. Significant enhancement of the toughness and flexibility of PBS was achieved by the addition of SDV. The rheological test revealed that the decrease of modulus and viscosity improved the processing properties of the materials, which broadened the PBS applications. Altogether the SEM showed the fracture surface of the composites undergoes a brittle-tough transition with increasing SDV content below 12% content, meanwhile, significant phase separation was observed in the composites with high content of SDV.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,Polymers and Plastics,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3