Use of virgin/recycled polyethylene blends in rotational moulding

Author:

Cestari Sibele Piedade1ORCID,J. Martin Peter2,R. Hanna Paul2,P. Kearns Mark2,Mendes Luis Claudio3,Millar Bronagh2

Affiliation:

1. School of Natural and Built Environment , Queen’s University of Belfast , University Road , Belfast , BT7 1NN , Northern Ireland , UK

2. Polymer Processing Research Centre , Queen’s University of Belfast , University Road , Belfast , BT7 1NN , Northern Ireland , UK

3. Universidade Federal do Rio de Janeiro , Avenida Horácio Macedo, 2030 – Centro de Tecnologia , Bloco J, Cidade Universitária , Rio de Janeiro , RJ 21941-598 , Brazil

Abstract

Abstract Aiming to further plastics recycling via rotational moulding plastics processing, blends of virgin and recycled polyethylene sourced from post-consumer plastics were developed. Three different kinds of recycled high density polyethylene – from bottles, pipes and mixed household waste – were compounded with virgin medium density polyethylene in an extruder. The ideal amount of recyclate was chosen based upon the impact resistance of different contents (25, 50 and 75%) of recycled plastic with the 50/50 blend found to have the best performance. Compression-moulded and rotationally-moulded samples were analysed through falling dart impact test, flexural test, melt flow rate and differential scanning calorimetry analysis. The impact results of the compression-moulded samples showed an increase in the impact resistance of the blends with a higher melt flow index and lower degree of crystallinity. The rotationally-moulded specimens displayed much lower impact resistance than the pure virgin plastic and a 20–30% reduction in the flexural moduli, which were ascribed to the crystalline structure of the part and issues in the blends’ rotomoulding process. It was concluded that blending virgin and recycled polyethylene for rotational moulding can be an effective way to further plastics recycling inside the Circular Economy context.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,Polymers and Plastics,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3