Chaotic mixing analysis of a novel single-screw extruder with a perturbation baffle by the finite-time Lyapunov exponent method

Author:

Liu Jian1,Zhu Xiangzhe1

Affiliation:

1. School of Mechanical Engineering, Liaoning Shihua University , Fushun Liaoning 113001 , China

Abstract

Abstract The single-screw extruder with a perturbation baffle is a novel piece of equipment for polymer processing, in which the polymer melts undergo complex chaotic mixing. In this paper, from a new Lagrangian perspective, the fluid transporting mechanism in chaotic flow of the unwound screw channel was analyzed based on the finite element method. Firstly, two-dimensional velocity distributions in the unwound screw channel were calculated based on the mesh superposition technique. Fluid particle evolution processes in the extruder were tracked based on the fourth-order Runge-Kutta scheme. The numerical method used in this paper was validated by grid independence and experiments obtained from literature. Moreover, the finite-time Lyapunov exponent (FTLE) and Poincaré sections were adopted to discuss the chaotic mixing in the novel single-screw extruder. The effects of baffle width and height on the manifold structures in the flow dynamic system were analyzed. The results show that the homoclinic point of the manifold structure can give rise to chaotic mixing in the single-screw extruder. The height of the baffle is an important parameter to control the chaotic strength. In a way, increasing the height of the baffle can enlarge the kink scale and increase the stretching and folding actions, which results in the decrease of regular regions and an increase of the mixing efficiency in the single-screw extruder.

Funder

National Natural Science Foundation of China

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,Polymers and Plastics,General Chemical Engineering

Reference29 articles.

1. Chella R, Ottino JM. Ind. Eng. Chem. Res. 1985, 24, 170–180.

2. Xu BP. CHN Patent, 2007, No.101003176.

3. Aref H. J. Fluid Mech. 1984, 143, 1–21.

4. Ottino JM. Annu. Rev. Fluid Mech. 1990, 22, 207–254.

5. Wiggins S. Phys. Today 1992, 45, 68–69.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3