Metal-insert technique for polypropylene composite bipolar plate manufacturing

Author:

Yeetsorn Rungsima1,Maiket Yaowaret2

Affiliation:

1. Department of Mechanical and Process Engineering, The Sirindhorn International Thai-German Graduate School of Engineering, King Mongkut’s University of Technology North Bangkok, Bangkok10800, Thailand

2. Thai-French Innovation Institute, King Mongkut’s University of Technology North Bangkok, Bangkok10800, Thailand

Abstract

AbstractA single cell of direct methanol fuel cell (DMFC) typically delivers an electrical potential between 0.5 and 1 V; thus DMFCs are assembled in parallel to meet power demands (1–5 kW). Bipolar plates (BPs) are the primary components connecting a single cell to the adjacent cells so that they provide optimum electrical conductivity. The objective of this research is to reduce the volume resistance of BPs made from a polypropylene/carbon composite by utilizing a metal insert technique. A major obstacle when it comes to molding composite plates inserted by a thin metal sheet is the delamination of material layers after the cooling process. The delamination issue is due to different surface polarities between metal and polypropylene-composite surfaces. One of the strategies to solve this issue is to modify the surface of one layer for creating similarity of the surface polarity. A metal sheet surface was coated with graphene using a cold spraying technique to enhance adhesion ability. The suitable spraying conditions were determined by experimenting with varying temperature, pressure, graphene quantity and graphene types. The effectiveness of surface modification by the graphene spraying technique was assessed by a surface morphology observation, an electrical conductivity measurement and DMFC performance tests. Results were interesting, they indicated that when DMFC was assembled with silver sheet, inserted BPs provided 25.13 mW/cm2 of power density, 3,350.7 mWh of generated energy and 67% of efficiency. This highlights that the performance of a BP prototype is superior to the performance of a commercial composite bipolar plate.

Funder

King Mongkut’s University of Technology North Bangkok

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,Polymers and Plastics,General Chemical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3