Development and characterization of ethyl cellulose nanosponges for sustained release of brigatinib for the treatment of non-small cell lung cancer

Author:

Ahmed Mohammed Muqtader1ORCID,Fatima Farhat1,Anwer Md. Khalid1,Ansari Mohammad Javed1,Das Sabya Sachi2,Alshahrani Saad M.1

Affiliation:

1. Department of Pharmaceutics, College of Pharmacy , Prince Sattam Bin Abdulaziz University , P.O. Box 173 , Al-Kharj, 11942 , Saudi Arabia

2. Department of Pharmaceutical Sciences and Technology , Birla Institute of Technology , Mesra , Ranchi, 835215 , Jharkhand , India

Abstract

Abstract Non-small cell lung cancer (NSCLC) contributes to about 85% of lung cancer. By 2040, lung cancer cases estimated to rise to 3.6 million globally. Brigatinib (BG) acts as tyrosine kinase inhibitors that target the epidermal growth factor receptor of the epithelial lung cancer cells. BG loaded nanosponges (NSs) were prepared by the emulsion solvent evaporation technique using ethylcellulose (EC) and polyvinyl alcohol (PVA) as a stabilizer. Eight formulations were developed by varying the concentration of the drug (BG), EC and PVA followed by optimization through particle characterization; size, polydispersity index (PDI), zeta potential (ZP), drug entrapment and loading efficiency. The optimized formulation BGNS5 showed particles size (261.0 ± 3.5 nm), PDI (0.301) and ZP(−19.83 ± 0.06 Mv) together with entrapment efficiency (85.69 ± 0.04%) and drug loading (17.69 ± 0.01%). FTIR, DSC, XRD, and SEM showed drug-polymer compatibility, entrapment of drug in EC core, non-crystallinity of BG in NS and confirm spherical porous nature of the NS. BGNS5 reflects drug release in a sustained manner, 86.91 ± 2.12% for about 12 h. BGNS5 significantly decreased the cell viability of A549 human lung cancer cell lines with less hemolytic ratio compared to pure drug BG and EC. Based on the aforementioned results BGNS5 could be used in the effective treatment of NSCLC.

Funder

Prince Sattam Bin Abdulaziz University

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,Polymers and Plastics,General Chemical Engineering

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3