An experimental investigation of flame retardancy and thermal stability of treated and untreated kenaf fiber reinforced epoxy composites

Author:

Muralidharan Nivedhitha Durgam1,Subramanian Jeyanthi1,Rajamanickam Sathish Kumar2,Gopalan Venkatachalam3

Affiliation:

1. School of Mechanical Engineering , Vellore Institute of Technology , Chennai 600127 , Tamil Nadu , India

2. Department of Automobile Engineering , Hindustan Institute of Technology and Science , Chennai 603103 , Tamil Nadu , India

3. Centre for Innovation and Product Development , Vellore Institute of Technology , Chennai 600127 , Tamil Nadu , India

Abstract

Abstract Natural fiber reinforced polymeric composites perform poor in mechanical and thermal properties at elevated temperatures due to the cellulose and hemicellulose contents of natural fiber start degrading at elevated temperature. In this research work, flame retardancy and thermal stability of treated and untreated kenaf fiber reinforced epoxy composites have been experimentally investigated and reported. Two composite laminates, one with 6 % NaOH Alkali treated and another with untreated woven kenaf mats, were fabricated by hand lay-up technique followed by compression molding with 40 % fiber weight fractions. Flame retardancy test and various thermal characteristics studies such as thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), heat deflection temperature (HDT), and morphological analysis via scanning electron microscopy (SEM) tests were carried out. The results showed that alkali treated kenaf fiber composite achieved V0 fire retardancy grade. The major weight losses, 86 % and 75.5 % for untreated and treated composites respectively were recorded between 300 °C and 450 °C. 13.6 % increase in HDT was noted for treated composite with 0.25 mm deflection at 0.45 MPa pressure condition. Thus the composite laminate with 6 % NaOH alkali-treated kenaf fiber achieved the best thermal stability with less degradation which is more suitable for automobile and aerospace applications.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,Polymers and Plastics,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3