Characteristics analysis and mold design for ultrasonic-assisted injection molding

Author:

Yang Yi-Jen,Huang Chung-Ching,Lin Shih-Kai,Tao Jie

Abstract

Abstract This study investigated the use of ultrasonic technology in assisted injection molding (AIM) and mold design. An ultrasonic device installed in a mold was employed to vibrate a melt, thereby converting kinetic energy into thermal energy. This method enabled maintaining the desired temperature in the melt flow, preventing a high level of shear and the formation of a thick frozen layer surrounding the skin layer; thus, the injection molding efficiency was enhanced and the residual stress inside the injection-molded component was reduced. In this study, a flat sample (75 mm×47 mm×1 mm) of an ultrasonic-assisted injection mold was developed. An ultrasonic oscillation device 45 mm in diameter was placed in the center of the cavity and used to vibrate a polycarbonate melt at a frequency of 20 KHz. In addition, cavity pressure sensors were positioned at the front and rear of the vibration region to analyze the melt flow behavior under ultrasonic-AIM (UAIM) conditions. The results showed that ultrasonic oscillations can reduce the amount of melt pressure lost through the cavity. The pressure loss of the flat sample used in UAIM was approximately 29% lower than that of the sample used in conventional injection molding (CIM; nonultrasonic-assisted injection); the power of UAIM did not yield substantial effects. Direct ultrasonic oscillations destroyed the melt flow and thermal stresses, therefore, the region exhibited a low stress distribution. Compared with using CIM, using UAIM reduced the average residual stress by 27%. Ultrasonic oscillation affected the surface roughness during melt solidification. When the ultrasonic power was <70%, no substantial increase in surface roughness was observed; however, when the ultrasonic power >70%, the surface roughness was 10 times higher compared with that observed using CIM.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,Polymers and Plastics,General Chemical Engineering

Reference36 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3