Tribological behavior of ultra-high molecular weight polyethylene (UHMWPE) for acetabular replacement under frictional heat based on molecular dynamics

Author:

Wang Songquan1,Wang Kaijun1,Fang Xingxing1,Li Dahan1,Lin Hao1,Guo Yongbo1

Affiliation:

1. Center for Tribology, College of Mechanical and Electrical Engineering , Jiangsu Normal University , Xuzhou , P.R. China

Abstract

Abstract Hip prostheses generate higher frictional heat than natural joints at the joint head-socket interface during in vivo service, resulting in higher temperatures of the contact surfaces and surrounding synovial fluid, which affects the frictional properties of the prosthetic material. In order to clarify the influence mechanism of frictional heat on the tribological behavior of ultra-high molecular weight polyethylene (UHMWPE) for acetabular replacement, the tribological tests of three contact pairs were carried out under different synovial fluid temperatures in this research. Furthermore, the movement processes of the molecular chain structure of UHMWPE during friction were simulated by Materials Studio (MS), and the mechanism of oxidative degradation was discussed. The results show that the temperature of synovial fluid has a significant effect on the friction and wear resistance of UHMWPE and the lubrication characteristics of synovial fluid. At the same time, the action mechanism of the proteins in the synovial fluid that gradually precipitate with the temperature rise to participate in the friction process is related to the friction pair material and contact mode. The synergistic effect of temperature rise and friction will accelerate the oxidative degradation reaction of UHMWPE and form ketone and alcohol oxides on its surface, thus reducing its wear resistance.

Funder

The National Natural Science Foundation of China

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,Polymers and Plastics,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3