MMA-based fast-curing repair materials suitable for low-temperature application

Author:

He Yashu1,Wang Zhenyang1,Wen Fengyu1,Sirotin Igor S.2,Mu Jianxin1,Kireev Vyacheslav V.2

Affiliation:

1. Key Laboratory of High Performance Plastics, Ministry of Education, National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer , College of Chemistry, Jilin University , 2699 Qianjin Street , Changchun , 130012 , China

2. Mendeleev University of Chemical Technology of Russia , Miusskaya sq. 9 , Moscow , 125047 , Russia

Abstract

Abstract In this study, the application of methyl methacrylate (MMA) resin as the binder and standard sand as the aggregate has been employed to prepare the repair materials that can be cured in the sub-zero temperature environment. For this purpose, the redox initiation system of benzoyl peroxide (BPO) and N,N-dimethyl-p-toluidine (DMPT) has been used. Subsequently, the influence of initiator and accelerator content on the compressive strength, flexural strength, curing time and other properties of the materials has been revealed. At an ambient temperature of 0 °C, with BPO = 4.5% and DMPT = 3.5%, the developed repair materials can be cured within 31 min, and the 1 h compressive strength reaches 84.6 MPa. At an ambient temperature of −25 °C, with BPO = 4% and DMPT = 5%, the repair materials can be cured within 43 min, with the 1 h compressive strength reaching 53.4 MPa. The materials can be swiftly cured at low-temperature and exhibit excellent mechanical properties, thus, confirming their suitability for extreme environments. Fourier transform infrared spectrometry (FT-IR), scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and other techniques have been employed to characterize the developed materials.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,Polymers and Plastics,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3