Flexible silicone rubber/carbon fiber/nano-diamond composites with enhanced thermal conductivity via reducing the interface thermal resistance

Author:

Wang Chaoyu1,Shen Junqi1,Hao Zhi1,Luo Zhu1,Shen Zong1,Li Xiaolong2,Yang Le3,Zhou Qin1

Affiliation:

1. College of Materials and Metallurgy , Guizhou University , Guiyang 550025 , China

2. Key Laboratory of Material Chemistry for Energy Conversion and Storage of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology , Wuhan 430074 , China

3. School of Materials and Energy Engineering, Guizhou Institute of Technology , Guiyang 550025 , China

Abstract

Abstract Insulating materials with heat dissipation are urgently required for modern electronic devices and systems. In this study, 4,4-methylene diphenyl diisocyanate was used as the coupling agent, and nano-diamond (ND) particles were grafted onto the surface of carbon fibers (CFs) to prepare CF-ND/silicone rubber (SR) composites. The ND acted as a “bridge” among CFs, which can reduce the interface thermal resistance between CFs because the dot-like ND can increase the interfacial area of CFs, making it easier to form heat-conducting networks between SR. When the content of CF-ND (1:6) was 20%, the thermal conductivity of the SR composite was 0.305 W/(m·K), 69% higher than that of pure SR. The ND between CFs can improve the dynamic mechanical properties by acting as a crack pinhole. In addition, the CF-ND/SR composites also exhibited excellent thermal stability. This work has enormous potential for advanced electronic devices.

Funder

Scientific Research Project of Introducing Talents of Guizhou University

the Science and Technology Department of Guizhou Province

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,Polymers and Plastics,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3