Affiliation:
1. School of Chemistry and Chemical Engineering, Xianyang Normal University, Xianyang, 712000, PR China
Abstract
AbstractA solid fluorescence sensor composed of g-C3N4 nanosheets and chitosan solid film was fabricated by electrostatic interaction. The g-C3N4 nanosheet/chitosan solid film showed selectivity and sensitivity to Cu2+ which was higher than that of other metal ions in common use. Cu2+ ions were found to efficiently bind and quench the fluorescence of the g-C3N4 nanosheet/chitosan solid film. The absorption band of the g-C3N4 nanosheet/chitosan solid film was at 240 nm in the presence of Cu2+, and the maximum emission peak was at 380 nm. Copper ion concentrations were between 0 and 3.1 × 10−5 mol/L at pH 7, the detection limit is 5 nM, compared with previous reports, it was much lower than before. Good linear relationships existed between the metal ion concentration and fluorescence intensity of g-C3N4 nanosheets in the quenching and recovering processes. This is the first study to report on the detection of Cu2+ by utilizing g-C3N4 nanosheet/chitosan composite film. The as-prepared films were conveniently prepared, easy to operate, and recyclable, as well as sensitive and selective to detect Cu2+ in water. All these features indicate the sensor’s potential application in disease diagnosis.
Funder
The National Natural Science Foundation of China
Xianyang Normal University
Xianyang Normal University Innovative entrepreneurship project
Xianyang Science and Technology Bureau Project
Subject
Materials Chemistry,Polymers and Plastics,General Chemical Engineering
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献