Author:
Liu Qingsheng,Ouyang Jie,Liu Zhijun,Li Wuming
Abstract
Abstract
Co-injection molding (CIM) is an advanced technology which was developed to meet quality requirements and to reduce the material cost. Theoretical investigations concerning it are very limited, especially for simultaneous CIM. The interactions of air, skin and core polymer melt in the process are very complex, which makes it more challenging to simulate free surface flows in the mold. Thus, this article presents a mathematical model for it. The extended Pom-Pom (XPP) model is selected to predict the viscoelastic behavior of polymer melt. The free surface is captured by the level set method. The article vividly shows the simultaneous CIM process by means of a visual numerical simulation technique. Both two-dimensional (2D) and 3D examples are presented to validate the model and illustrate its capabilities. The 3D flow behaviors of simultaneous CIM process are hard to predict numerically. To our knowledge, this is the first attempt at simulating melt flow behaviors in 3D simultaneous CIM based on the XPP constitutive equation and visual technique. The numerical results are in good agreement with the available experiment results, which establish the capability of the multiphase flow model presented in this article to simulate the flow behaviors of polymer melt in simultaneous CIM process.
Subject
Materials Chemistry,Polymers and Plastics,General Chemical Engineering
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献