Author:
Li Shuai,Zhao Guoqun,Wang Jiachang
Abstract
Abstract
Gas counter pressure (GCP) technology can impose a reverse pressure to melt and thereby effectively increase the pressure acting on the melt at flow front. Theoretically, it has a potential to solve some defects often occurring in conventional injection molding (CIM) process. This paper designed and manufactured a GCP injection mold. GCP injection molding experiments were conducted. Effects of GCP process on melt flow and density, dimensional accuracy, and mechanical properties of molded samples were investigated. The results showed that GCP process can effectively inhibit the “fountain effect” in melt filling process, decrease the dimensional shrinkage of molded samples, increase dimensional accuracy of samples, and effectively improve impact property of samples. For the samples without weld line, tensile strength and flexural strength of GCP injection molded samples are slightly increased in comparison with those of CIM samples, but for the samples with weld line, GCP process can greatly improve the tensile strength and flexural strength of molded samples. When GCP is 9 MPa and GCP holding time is 10 s, the dimensional accuracy of molded samples without weld line, the tensile strength and flexural strength of the molded samples with weld line all increase up to maximum values. In comparison with CIM samples, the dimensional shrinkage of samples without weld line decreases by 17.2%, the tensile strength and flexural strength of samples with weld line increase by 30.51% and 23.69%, respectively. The impact value of the samples molded by process parameter combination of GCP 9 MPa and GCP holding time 20 s is the highest, and the impact value increases by 18.65%.
Subject
Materials Chemistry,Polymers and Plastics,General Chemical Engineering
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献