Multi-objective optimization of injection-molded plastic parts using entropy weight, random forest, and genetic algorithm methods

Author:

Cao Yanli1,Fan Xiying1,Guo Yonghuan1,Li Sai1,Huang Haiyue1

Affiliation:

1. Jiangsu Normal University, No. 101 Shanghai Road, New District of Tongshan, Xuzhou, Jiangsu 221116, China

Abstract

AbstractThe qualities of injection-molded parts are affected by process parameters. Warpage and volume shrinkage are two typical defects. Moreover, insufficient or excessively large clamping force also affects the quality of parts and the cost of the process. An experiment based on the orthogonal design was conducted to minimize the above defects. Moldflow software was used to simulate the injection process of each experiment. The entropy weight was used to determine the weight of each index, the comprehensive evaluation value was calculated, and multi-objective optimization was transformed into single-objective optimization. A regression model was established by the random forest (RF) algorithm. To further illustrate the reliability and accuracy of the model, back-propagation neural network and kriging models were taken as comparative algorithms. The results showed that the error of RF was the smallest and its performance was the best. Finally, genetic algorithm was used to search for the minimum of the regression model established by RF. The optimal parameters were found to improve the quality of plastic parts and reduce the energy consumption. The plastic parts manufactured by the optimal process parameters showed good quality and met the requirements of production.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,Polymers and Plastics,General Chemical Engineering

Cited by 47 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3