Solution blow spinning polysulfone-Aliquat 336 nanofibers: synthesis, characterization, and application for the extraction and preconcentration of losartan from aqueous solutions

Author:

Montesinos-Vázquez Tanese1,Pérez-Silva Irma1ORCID,Galán-Vidal Carlos A.1ORCID,Ibarra Israel S.1ORCID,Rodríguez José A.1ORCID,Páez-Hernández M. Elena1ORCID

Affiliation:

1. Laboratorio 2, Área Académica de Química , Universidad Autónoma del Estado de Hidalgo , Carretera Pachuca-Tulancingo Km. 4.5 , 42184 Mineral de la Reforma , Hidalgo , Mexico

Abstract

Abstract Nanofibers are materials used in a wide range of applications due to their unique physicochemical properties. As an alternative to the most common method of its manufacturing (electrospinning) blow spinning has been used since it has greater production efficiency and simplicity. A wide variety of polymers is used for its preparation and can be modified to improve the interaction and selectivity toward specific analytes. Thereby nanofibers have been used for the extraction or removal of organic compounds such as drugs but there are still few reports of drug extractions like losartan. In this work polysulfone-Aliquat 336 nanofibers were prepared using the blow spinning method to extract and preconcentrate losartan. The studies showed that Aliquat 336 incorporation significantly improve the extraction of losartan with polysulfone fibers. Adsorption process was thermodynamically favorable with an adsorption capacity of 15.45 mg·g−1. Thus, it was possible to extract more than 92% of initial losartan using 10 mg of polysulfone-Aliquat 336 fibers (9 and 3.5% (w/v)), at pH 6 from deionized water and synthetic wastewater. Finally, losartan preconcentration was evaluated to facilitate its quantification using ultraviolet–visible spectrometry (UV-Vis), which allowed the determination of this drug at concentrations below the detection limit.

Funder

Consejo Nacional de Ciencia y Tecnología

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,Polymers and Plastics,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3