Electrical conductivity and thermal stability of surface-modified multiwalled carbon nanotubes/polysulfone/poly(p-phenylenediamine) composites

Author:

Abdelhamid Ahmed E.1,Ward Azza A.2,Khalil Ahmed M.3ORCID

Affiliation:

1. Polymers and Pigments Department , National Research Centre , Dokki 12622 , Giza , Egypt

2. Microwave Physics and Dielectrics Department , National Research Centre , Dokki 12622 , Giza , Egypt

3. Photochemistry Department , National Research Centre , Dokki 12622 , Giza , Egypt

Abstract

Abstract Multiwalled carbon nanotubes (MWCNTs) were functionalized with acid then coated with poly(p-phenylenediamine) (PpPD). Various concentrations of modified multiwalled carbon nanotubes (MWCNTs@PpPD) were introduced to a polysulfone (PSU) and poly(p-phenylenediamine) (PpPD) blend providing nanocomposites in form of sheets. Chemical oxidative polymerization was used to polymerize p-phenylenediamine. PpPD is then applied as a compatibilizer in such heterogeneous system to facilitate a successful percolation for MWCNTs in the polymeric matrix as an enhanced conductive filler. The morphological investigations showed homogeneous distribution for MWCNTs in the polymeric matrix. The prepared composites were investigated demonstrating favorable thermal and electrical properties. Thermogravimetric analysis (TGA) emphasized that MWCNTs@PpPD contributed in enhancing the thermal stability of the prepared sheets. The electrical conductivity of PSU/PpPD/MWCNTs@PpPD nanocomposites boosted upon raising the magnitude of loaded MWCNTs. The existence of MWCNTs@PpPD in the polymeric matrix extended the interfacial polarization effects with elevating the conductance. The loaded composite with (7.5 wt%) MWCNTs@PpPD showed the optimum electrical conductivity values. It was then treated with HCl to protonate the amine groups in PpPD showing higher conductivity value than its corresponding untreated one. PpPD and MWCNTs contributed synergistically in modifying the insulation feature of PSU to a favorable electrical conductivity one.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,Polymers and Plastics,General Chemical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3